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The purpose of this document is to introduce students to the techniques used to perform a straight line fit
to data that exhibit a linear trend. The data fitting techniques presented in this document can be applied
to data with instrumental uncertainties, and uncertainties that are not constant between data points. A
Monte Carlo data set is used to illustrate the effects of fitting the straight line function y(x) = a + bx. The
equations used to calculate the fitting parameters a and b, and their respective uncertainties δa and δb are
also presented. Comments regarding the χ2 for the various fitting techniques are also presented.

I. BACKGROUND

The most common data sets encountered in physics
labs are those exhibiting a linear trend. In most cases
this is a reflection of the linear dependence of the
phenomenon under observation. Many of these phe-
nomena are described by simple functions, for example,
F = − (Y A/L0)x, where the observed response to an
external force F is a displacement from equilibrium
measured by the parameter x. Students in our PS315
Modern Physics Lab will encounter this linear depen-
dence in multiple labs.

Also, there are many computer programs already writ-
ten to fit this kind of data. Two common languages used
in this process are MATLAB and Mathematica. Because
there is no accepted standard on our campus for software
and hardware, the purpose of this note is to present the
equations used in a straight-line fit for various kinds of
data, independent of the computer program and com-
puter platform (e.g., PC, Mac, etc.) While many of the
programs can calculate the best fit parameters to a func-
tion y(x) = a+bx, many of them ignore the uncertainties
associated with these parameters, δa and δb. In this pa-
per, the techniques used to determine the uncertainties
δa and δb are also described.

II. MONTE-CARLO GENERATED DATA SET

A sample data set of 31 points was generated where the
data were smeared in the y-direction by randomly choos-
ing values from a gaussian distribution with a σ=0.300.
This kind of smearing is typical for a data set exhibit-
ing instrumental uncertainties. The data set described
in this paper contains 31 data points {xi, yi, σ} and this
is shown in Fig. 1.

III. WHICH PATH TO CHOOSE

There are two approaches to a linear fit and the choice
depends upon the kind of uncertainties contained in the
data. Either the data has uncertainties that vary from

FIG. 1. This figure shows Monte-Carlo generated data
{xi, yi, σ} using a straight line function y(x) = a + bx where
the y values are smeared according to a gaussian function with
σ = 0.30.

point-to-point denoted by σi, or the uncertainties are
constant from point-to-point (i.e., instrumental uncer-
tainties) denoted as σ. These two paths are shown in
Fig.2.

A. Variable uncertainties σi

The most general solution to a straight-line fit is where
the uncertainties vary from point-to-point {xi, yi, σi}.
The fitting parameters are determined from minimizing
the χ2, more specifically solving the system of two equa-
tions ∂χ2/∂a = 0 and ∂χ2/∂b = 0 where χ2 is defined by
Eq. 1

χ2 =

N∑
i=1

(devi)
2

σ2
i

(1)

devi = yi − (a+ bxi)

The results from solving this system of two equations
and two unknowns (a and b) is shown in Eq. 2.
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FIG. 2. This figure illustrates the two paths described in this
paper. In the first case, the data contain uncertainties that
change with each data point σi (e.g., random or calculated un-
certainties). In the second case, the uncertainty is described
by a single instrumental uncertainty σ that is either deter-
mined by the data, or provided by the user.
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When these equations are applied to the data set
above, the following parameters are obtained:

a = 7.89± 0.06

b = −0.486± 0.006

The χ2 for N − 2 = 29 degrees of freedom is 21.27. In
this fit, we presumed that all the uncertainties were the
same σi = 0.300, even though the equations were set up
to handle unequal σi.

B. Fixed Uncertainties σ

In this case, there is only one uncertainty σ instead of
multiple uncertainties σi. The sole uncertainty can be
(1) determined by the data, or (2) provided by the user.

1. Uncertainty – determined by the data

In the first case where the uncertainty is determined
by the data, σ is calculated using the following equa-
tion:
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The equations for calculating a, b, δa, and δb, are sim-
ilar to Eqs. 2:
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Using the above equation for σ, the resulting χ2 must be

χ2 =
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2

σ2
= N − 2 = 29 (5)

the number of degrees of freedom. The parameters ob-
tained using Eqs. 4 are:

a = 7.89± 0.05

b = −0.487± 0.005

While the values of a and b do not show much differ-
ence when compared to the previous values of a and b,
the uncertainties would show significant difference if the
degrees of freedom were smaller (e.g., N − 2 = 1 → 10),
instead of 29.

2. Uncertainty – determined by the user

If the user decides to introduce their own uncertainty
(σ′) in the data set {xi, yi, σ′}, then σ′ will replace Eq. 3.
The user should proceed with their data analysis and use
Eqs. 4 to obtain a, b, δa, and δb. However the χ2 will not
be equal to N −2 as shown in Eq. 5. The normal rules of
comparing χ2 results to acceptable confidence levels then
applies.

One could also take the modified data set {xi, yi, σ′}
and apply Eqs. 2 to their data analysis, and obtain the
same results as in the previous paragraph.
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IV. IDIOSYNCRASIES WITH GENFIT

When comparing these results with Genfit, the user
could run into disagreements in two areas. First, Gen-
fit evaluates the number of significant digits in the final
parameters and their uncertainties. This is based on the
number of significant digits provided by the user when
passing the data set {xi, yi, σi} to Genfit. Normally, this
is a nice feature to have; however, the returned param-
eters can be significantly skewed. Some vendors present
their data in integer format, or insufficient number of sig-
nificant digits (e.g., the time markers in the Cavendish
experiment). Thus Genfit prematurely reduces the num-
ber of significant digits in its calculations. The author
of Genfit would rightfully say that the “vendor” should
correct this oversight, and “they” should.

The second area of disagreement is how Genfit calcu-
lates the instrumental uncertainty shown in Eq. 3. It uses
1/N instead of 1/(N − 2). Since two degrees of freedom
are used to determine a and b for devi, this should be re-
flected in the uncertainty (σ) of the sample distribution
as determined by the data. Once again, if the number of
degrees of freedom is small (i.e., between 1 → 10), this
will skew the uncertainties δa and δb coming from Genfit
compared to standard Linear Regression models.


